Bayesian epistemology has struggled with the problem of regularity: how to deal with events that in classical probability have zero probability. While the cases most discussed in the literature, such as infinite sequences of coin tosses or continuous spinners, do not actually come up in scientific practice, there are cases that do come up in science. I shall argue that these cases can be resolved without leaving the realm of classical probability, by choosing a probability measure that preserves ``enough'' regularity. This approach also provides a resolution to the McGrew, McGrew and Vestrum normalization problem for the fine-tuning argument