Ce travail de recherche est consacréau H∞ calcul fonctionnel joint ded-uplets commutants d’opérateurs sectoriels ou opérateurs de Ritt. La première partie donne les outils nécessaires, notamment les moyennes de Rademacher et gaussiennes ainsi que la notion d’opérateurs R-bornés et γ-bornés. On d´écrit ensuite lespropriétés géométriques des espaces de Banach qui interviennent dans les résultatsobtenus. Ensuite, on étend une décomposition de fonctions holomorphes, originellement due à Franks et McIntosh, au cas des fonctions de plusieurs variables. Les premiers résultats traitent du caractère automatique du calcul joint dans le sens suivant : sichaque élément du d-uplets admet un H∞ calcul fonctionnel, sous quelles conditions ced-uplets admet...
We study sectorial operators with a special type of functional calculus, which we term an absolute f...
International audienceIn this paper a real Hilbert space H and a pair of closed subspaces Hi, and Hj...
The thesis is concerned with the smooth functional calculus for operators with spectrum in the posit...
This research work is dedicated to the H∞ joint functional calculus ofd-tuples of commuting sectoria...
In this paper we are concerned with H ∞ functional calculus in the sense of the construction introdu...
. Let S and T be commuting operators of type ! and type $ in a Banach space X . Then the pair has a ...
AbstractA characteristic function ΘT is defined, in terms of multianalytic operators on Fock spaces,...
For any Ritt operator T:L^{p}(\Omega) --> L^{p}(\Omega), for any positive real number \alpha, and fo...
The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, ...
Abstract. We generalize a Hilbert space result by Auscher, McIntosh and Nahmod to arbitrary Banach s...
AbstractIn this paper we systematically study extension questions in families of commuting operator ...
The main study of this thesis is the holomorphic functional calculi for three classes of unbounded o...
Cette thèse porte sur l'étude de classes d'opérateurs. On étudie principalement deux familles différ...
In this paper we give two counterexamples to the closedness of the sum of two sectorial operators wi...
this paper M c Intosh developed a functional calculus for type ! operators, which we will call secto...
We study sectorial operators with a special type of functional calculus, which we term an absolute f...
International audienceIn this paper a real Hilbert space H and a pair of closed subspaces Hi, and Hj...
The thesis is concerned with the smooth functional calculus for operators with spectrum in the posit...
This research work is dedicated to the H∞ joint functional calculus ofd-tuples of commuting sectoria...
In this paper we are concerned with H ∞ functional calculus in the sense of the construction introdu...
. Let S and T be commuting operators of type ! and type $ in a Banach space X . Then the pair has a ...
AbstractA characteristic function ΘT is defined, in terms of multianalytic operators on Fock spaces,...
For any Ritt operator T:L^{p}(\Omega) --> L^{p}(\Omega), for any positive real number \alpha, and fo...
The present volume develops the theory of integration in Banach spaces, martingales and UMD spaces, ...
Abstract. We generalize a Hilbert space result by Auscher, McIntosh and Nahmod to arbitrary Banach s...
AbstractIn this paper we systematically study extension questions in families of commuting operator ...
The main study of this thesis is the holomorphic functional calculi for three classes of unbounded o...
Cette thèse porte sur l'étude de classes d'opérateurs. On étudie principalement deux familles différ...
In this paper we give two counterexamples to the closedness of the sum of two sectorial operators wi...
this paper M c Intosh developed a functional calculus for type ! operators, which we will call secto...
We study sectorial operators with a special type of functional calculus, which we term an absolute f...
International audienceIn this paper a real Hilbert space H and a pair of closed subspaces Hi, and Hj...
The thesis is concerned with the smooth functional calculus for operators with spectrum in the posit...