Many domains have an interest in studying the stances expressed online, whether for marketing, cybersecurity or research with the rise of the digital humanities. In this manuscript, we propose two contributions to the field of stance detection, focusing on the difficulty of obtaining quality annotated data on social media. Our first contribution is a large and complex dataset of 22,853 active Twitter profiles during the 2017 French presidential campaign. This is one of the few datasets considering more than two stances and, to our knowledge, the first with a large number of profiles and the first proposing overlapping political communities. This dataset can be used as-is to study campaign mechanisms on Twitter or to evaluate stance detectio...