Transparent metallic oxides are pivotal materials in information technology, photovoltaics, or even in architecture. They display the rare combination of metallicity and transparency in the visible range because of weak interband photon absorption and weak screening of free carriers to impinging light. However, the workhorse of current technology, indium tin oxide (ITO), is facing severe limitations and alternative approaches are needed. AMO perovskites, M being a nd transition metal, and A an alkaline earth, have a genuine metallic character and, in contrast to conventional metals, the electron-electron correlations within the nd band enhance the carriers effective mass (m*) and bring the transparency window limit (marked by the plasma fre...