In this paper we characterize commutative rings with finite dimensional classical ring of quotients. To illustrate the diversity of behavior of these rings we examine the case of local rings and FPF rings. Our results extend earlier work on rings with zerodimensional rings of quotients
AbstractThis paper studies the multiplicative ideal structure of commutative rings in which every fi...
Let R be a Noetherian ring which is a finite module over its centre C. We obtain a necessary and suf...
Rings of quotients of Cc(X), the subalgebra of C(X) consisting of elements with countable range are ...
In this paper we characterize commutative rings with finite dimensional classical ring of quotients....
1. Introduction This paper investigates several homotopy invariant finiteness conditions on modules ...
ABSTRACT. Several finiteness conditions on a commutative ring are investigated. It is shown that the...
Abstract. A ring is called CT (commutative transitive) if commutativity is a transitive relation on ...
In this paper we will examine properties of and relationships between rings that share some properti...
This is the first of a series of four papers describing the finitely generated modules over all comm...
Finite Commutative Rings and their Applications is the first to address both theoretical and practic...
We show that a ring with only finitely many noncentral subrings must be either commutative or finite...
We give structure theorems for tensor products R⊕S, and quotient rings Q/I to be finite commut...
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for a...
This is the second of two volumes of a state-of-the-art survey article collection which originates f...
Abstract. In this paper we consider five possible extensions of the Prüfer domain notion to the cas...
AbstractThis paper studies the multiplicative ideal structure of commutative rings in which every fi...
Let R be a Noetherian ring which is a finite module over its centre C. We obtain a necessary and suf...
Rings of quotients of Cc(X), the subalgebra of C(X) consisting of elements with countable range are ...
In this paper we characterize commutative rings with finite dimensional classical ring of quotients....
1. Introduction This paper investigates several homotopy invariant finiteness conditions on modules ...
ABSTRACT. Several finiteness conditions on a commutative ring are investigated. It is shown that the...
Abstract. A ring is called CT (commutative transitive) if commutativity is a transitive relation on ...
In this paper we will examine properties of and relationships between rings that share some properti...
This is the first of a series of four papers describing the finitely generated modules over all comm...
Finite Commutative Rings and their Applications is the first to address both theoretical and practic...
We show that a ring with only finitely many noncentral subrings must be either commutative or finite...
We give structure theorems for tensor products R⊕S, and quotient rings Q/I to be finite commut...
Foreword by Dieter Jungnickel Finite Commutative Rings and their Applications answers a need for a...
This is the second of two volumes of a state-of-the-art survey article collection which originates f...
Abstract. In this paper we consider five possible extensions of the Prüfer domain notion to the cas...
AbstractThis paper studies the multiplicative ideal structure of commutative rings in which every fi...
Let R be a Noetherian ring which is a finite module over its centre C. We obtain a necessary and suf...
Rings of quotients of Cc(X), the subalgebra of C(X) consisting of elements with countable range are ...