Hluboké neuronové sítě (DNN) se zkoumají v různých aplikacích strojového učení. Klasifikace evokovaných potenciálů (ERP) je velmi složitý úkol, potenciálně vhodný pro DNN, protože poměr signál-šum je nízký a související prostorové a časové příznaky vykazují výraznou variabilitu. Konvoluční neuronové sítě (CNN) byly srovnány s nejlepšími tradičními modely, tj. s lineární diskriminační analýzou (LDA) a Support Vector Machines (SVM) pro single-trial klasifikaci s využitím rozsáhlého veřejně dostupného P300 datasetu dětí školního věku (138 chlapců a 112 dívek). Úspěšnost klasifikace u všech testovaných klasifikačních modelů se pohybovala mezi 62 % a 64 %. Při nasazení natrénovaných klasifikačních modelů na zprůměrované ERP odpovědi se přesnost ...