This research project deals with computationally related problems in the general area of l(,p) (p (GREATERTHEQ) 1) estimation in linear models. Methods for computing l(,p) estimate in linear models are studied. In case of p = 1, descent methods from Bloomfield and Steiger, and Usow are discussed. A proof of convergence of these methods is provided. In case of p \u3e 1, Newton\u27s method and Quasi-Newton method are discussed. A new method is proposed and studied. It performs extremely well for p close to 2. Also, closed form solutions of the l(,p) estimation problem having design matrix of dimension (m + 1) x m or (m +2) x m are derived, and methods of generating test problems for the general l(,p) estimation problem are discussed. In anoth...