Generative Adversarial Networks (GANs) have proven to be efficient systems for data generation and other machine learning tasks. They owe their success to a minimax learning concept initially proposed by Schmidhuber (1990) to implement Artificial Curiosity. Two learning networks, a generator and an evaluator or discriminator, compete with each other in a zero-sum game. Despite their obvious advantages and their application to a wide range of domains, GANs have yet to overcome several challenges such as non-convergence, overfitting, mode collapse, amongst others. New advancements in deep representation learning (RL) can help improve the learning process in GenerativeAdversarial Learning (GAL). For instance, RL can help address issues such as...