Deep Neural Networks have achieved impressive results in a wide range of applications over the past few years, being responsible for many advances in computational technology. However, debugging and understanding the inner workings from these models is a complex task, as there are often millions of variables involved in every decision. Aiming to solve this problem, researchers from the fields of Visual Analytics and Explainable Artificial Intelligence have proposed several approaches to visualize and explain different aspects of DNN models. One of such approaches is the use of Dimensionality Reduction techniques for hidden layer output visualization, which has been employed in literature with relative success. However, there are certain lim...
Visual analysis of high dimensional data is a challenging process. Direct visualizations work well f...
Over the last decade, deep neural networks (DNNs) have become a standard tool in computer vision, al...
Devido ao crescimento do volume de imagens e, consequentemente, da grande quantidade e complexidade ...
As técnicas de projeção multidimensional, ou também conhecidas como técnicas de redução de dimension...
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do ...
Nas últimas décadas, avanços em tecnologias de geração, coleta e armazenamento de dados têm contribu...
Deep Neural Networks are responsible for many groundbreaking results achieved in Arti- ficial Intell...
In machine learning, pattern classification assigns high-dimensional vectors (observations) to class...
The visual interpretation of data is an essential step to guide any further processing or decision m...
In the wake of the revolution brought by Deep Learning, we believe neural networks can be leveraged ...
In machine learning, pattern classification assigns high-dimensional vectors (observations) to class...
As the amount of data stored throughout the world increases, the need to process, analyze and visual...
The goal of Dimensionality Reduction is to transform the data from highdimensional space into visual...
Šiame magistro darbe apžvelgiami daugiamačių duomenų dimensijos mažinimo (vizualizavimo) metodai, ta...
A tecnologia atual permite armazenar grandes quantidades de dados, no entanto sua exploração e compr...
Visual analysis of high dimensional data is a challenging process. Direct visualizations work well f...
Over the last decade, deep neural networks (DNNs) have become a standard tool in computer vision, al...
Devido ao crescimento do volume de imagens e, consequentemente, da grande quantidade e complexidade ...
As técnicas de projeção multidimensional, ou também conhecidas como técnicas de redução de dimension...
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do ...
Nas últimas décadas, avanços em tecnologias de geração, coleta e armazenamento de dados têm contribu...
Deep Neural Networks are responsible for many groundbreaking results achieved in Arti- ficial Intell...
In machine learning, pattern classification assigns high-dimensional vectors (observations) to class...
The visual interpretation of data is an essential step to guide any further processing or decision m...
In the wake of the revolution brought by Deep Learning, we believe neural networks can be leveraged ...
In machine learning, pattern classification assigns high-dimensional vectors (observations) to class...
As the amount of data stored throughout the world increases, the need to process, analyze and visual...
The goal of Dimensionality Reduction is to transform the data from highdimensional space into visual...
Šiame magistro darbe apžvelgiami daugiamačių duomenų dimensijos mažinimo (vizualizavimo) metodai, ta...
A tecnologia atual permite armazenar grandes quantidades de dados, no entanto sua exploração e compr...
Visual analysis of high dimensional data is a challenging process. Direct visualizations work well f...
Over the last decade, deep neural networks (DNNs) have become a standard tool in computer vision, al...
Devido ao crescimento do volume de imagens e, consequentemente, da grande quantidade e complexidade ...