Thermochemical equilibria are calculated in the multicomponent gas-solution-rock system in order to evaluate the formation conditions of fayalite, (Fe0.881.0Mg0.120)2SiO4, Fa88100, in unequilibrated chondrites. Effects of temperature, pressure, water/rock ratio, rock composition, and progress of alteration are evaluated. The modeling shows that fayalite can form as a minor secondary and transient phase with and without aqueous solution. Fayalite can form at temperatures below ~350 degrees C, but only in a narrow range of water/rock ratios that designates a transition between aqueous and metamorphic conditions. Pure fayalite forms at lower temperatures, higher water/rock ratios, and elevated pressures that correspond to higher H2/H2O ratios....