The interaction between the Coriolis force and the Stokes drift associated with ocean surface waves leads to a vertical transport of momentum, which can be expressed as a force on the mean momentum equation in the direction along wave crests. How this Coriolis-Stokes forcing affects the mean current profile in a wind-driven mixed layer is investigated using simple models, results from large-eddy simulations, and observational data. The effects of the Coriolis-Stokes forcing on the mean current profile are examined by reappraising analytical solutions to the Ekman model that include the Coriolis-Stokes forcing. Turbulent momentum transfer is modeled using an eddy-viscosity model, first with a constant viscosity and second with a linearly var...