We consider the problem of computing shortest paths subject to an additional resource constraint such as a hard limit on the (positive) height difference of the path. This is typically of interest in the context of bicycle route planning, or when energy consumption is to be limited. So far, the exact computation of such constrained shortest paths was not feasible on large networks; we show that state-of-the-art speed-up techniques for the shortest path problem, like contraction hierarchies, can be instrumented to solve this problem efficiently in practice despite the NP-hardness in general
AbstractOn a network with a cycle, where at least one cycle exists, the Floyd–Warshall algorithm is ...
The constrained shortest-path problem (CSPP) generalizes the standard shortest-path problem by addin...
The motion planning problems for non-holonomic car-like robots have been extensively studied in the ...
We present a new heuristic point-to-point shortest path algo-rithm based on contraction hierarchies ...
The classical shortest path problem, to find a path of minimal cost between two nodes in a graph, is...
Time-Dependent Contraction Hierarchies is a routing technique that solves the shortest path problem ...
In this paper we consider a variant of the multi-criteria shortest path problem where the different ...
AbstractConstrained shortest path problems have many applications in areas like network routing, inv...
The classical shortest path problem, to find a path of minimal cost between two nodes in a graph, is...
The constrained shortest path (CSP) problem requires the determination of a minimum cost s- t path w...
In the shortest path problem we have a weighted graph, a source vertex and a target vertex as an inp...
In the context of recreational routing, the problem of finding a route which starts and ends in the ...
Typescript (photocopy).The bicriterion and singly constrained shortest path problems constitute impo...
Efficiently computing shortest paths is an essential building block of many mobility applications, m...
Contraction hierarchies (CH) is a prominent preprocessing-based technique that accelerates the compu...
AbstractOn a network with a cycle, where at least one cycle exists, the Floyd–Warshall algorithm is ...
The constrained shortest-path problem (CSPP) generalizes the standard shortest-path problem by addin...
The motion planning problems for non-holonomic car-like robots have been extensively studied in the ...
We present a new heuristic point-to-point shortest path algo-rithm based on contraction hierarchies ...
The classical shortest path problem, to find a path of minimal cost between two nodes in a graph, is...
Time-Dependent Contraction Hierarchies is a routing technique that solves the shortest path problem ...
In this paper we consider a variant of the multi-criteria shortest path problem where the different ...
AbstractConstrained shortest path problems have many applications in areas like network routing, inv...
The classical shortest path problem, to find a path of minimal cost between two nodes in a graph, is...
The constrained shortest path (CSP) problem requires the determination of a minimum cost s- t path w...
In the shortest path problem we have a weighted graph, a source vertex and a target vertex as an inp...
In the context of recreational routing, the problem of finding a route which starts and ends in the ...
Typescript (photocopy).The bicriterion and singly constrained shortest path problems constitute impo...
Efficiently computing shortest paths is an essential building block of many mobility applications, m...
Contraction hierarchies (CH) is a prominent preprocessing-based technique that accelerates the compu...
AbstractOn a network with a cycle, where at least one cycle exists, the Floyd–Warshall algorithm is ...
The constrained shortest-path problem (CSPP) generalizes the standard shortest-path problem by addin...
The motion planning problems for non-holonomic car-like robots have been extensively studied in the ...