Top-N item recommendation techniques, e.g., pairwise models, learn the rank of users' preferred items through separating items into positive samples if user-item interactions exist, and negative samples otherwise. This separation results in an important issue: the extreme imbalance between positive and negative samples, because the number of items with user actions is much less than those without actions. The problem is even worse for "cold-start" users. In addition, existing learning models only consider the observed user-item proximity, while neglecting other useful relations, such as the unobserved but potentially helpful user-item relations, and high-order proximity in user-user, item-item relations. In this paper, we aim at incorporat...