This paper addresses both the model selection (i.e., estimating the number of clusters K) and subspace clustering problems in a unified model. The real data always distribute on a union of low-dimensional sub-manifolds which are embedded in a high-dimensional ambient space. In this regard, the state-of-the-art subspace clustering approaches firstly learn the affinity among samples, followed by a spectral clustering to generate the segmentation. However, arguably, the intrinsic geometrical structures among samples are rarely considered in the optimization process. In this paper, we propose to simultaneously estimate K and segment the samples according to the local similarity relationships derived from the affinity matrix. Given the correlati...