Distributions over rankings are used to model user preferences in various settings including political elections and electronic commerce. The Repeated Insertion Model (RIM) gives rise to various known probability distributions over rankings, in particular to the popular Mallows model. However, probabilistic inference on RIM is computationally challenging, and provably intractable in the general case. In this paper we propose an algorithm for computing the marginal probability of an arbitrary partially ordered set over RIM. We analyze the complexity of the algorithm in terms of properties of the model and the partial order, captured by a novel measure termed the "cover width." We also conduct an experimental study of the algorithm over seri...
Abstract. Learning preference models from human generated data is an important task in mod-ern infor...
We propose an EM-based framework for learning Plackett-Luce model and its mixtures from partial orde...
summary:Bayesian networks are a popular model for reasoning under uncertainty. We study the problem ...
We study the complexity of estimating the probability of an outcome in an election over probabilis...
We study the problem of learning probabilistic models for permutations, where the order between high...
Consider a set of N i.i.d. random variables in [0, 1]. When the experimental values of the random va...
Probabilistic models with weighted formulas, known as Markov models or log-linear models, are used i...
We tackle the problem of approximate inference in Probabilistic Relational Models (PRMs) and propose...
We propose the Pseudo-Mallows distribution over the set of all permutations of $n$ items, to approxi...
This paper studies the problem of inferring a global preference based on the partial rankings provid...
Weighted model counting, that is, counting the weighted number of satisfying assignments of a propos...
The Plackett‐Luce model (PL) for ranked data assumes the forward order of the ranking process. This ...
A recent and effective approach to probabilistic inference calls for reducing the problem to one of ...
AbstractA recent and effective approach to probabilistic inference calls for reducing the problem to...
Ordinal categorical random variables are random variables which take on values from a finite ordered...
Abstract. Learning preference models from human generated data is an important task in mod-ern infor...
We propose an EM-based framework for learning Plackett-Luce model and its mixtures from partial orde...
summary:Bayesian networks are a popular model for reasoning under uncertainty. We study the problem ...
We study the complexity of estimating the probability of an outcome in an election over probabilis...
We study the problem of learning probabilistic models for permutations, where the order between high...
Consider a set of N i.i.d. random variables in [0, 1]. When the experimental values of the random va...
Probabilistic models with weighted formulas, known as Markov models or log-linear models, are used i...
We tackle the problem of approximate inference in Probabilistic Relational Models (PRMs) and propose...
We propose the Pseudo-Mallows distribution over the set of all permutations of $n$ items, to approxi...
This paper studies the problem of inferring a global preference based on the partial rankings provid...
Weighted model counting, that is, counting the weighted number of satisfying assignments of a propos...
The Plackett‐Luce model (PL) for ranked data assumes the forward order of the ranking process. This ...
A recent and effective approach to probabilistic inference calls for reducing the problem to one of ...
AbstractA recent and effective approach to probabilistic inference calls for reducing the problem to...
Ordinal categorical random variables are random variables which take on values from a finite ordered...
Abstract. Learning preference models from human generated data is an important task in mod-ern infor...
We propose an EM-based framework for learning Plackett-Luce model and its mixtures from partial orde...
summary:Bayesian networks are a popular model for reasoning under uncertainty. We study the problem ...