To achieve peak performance, it is often necessary to adjust the parameters of a given algorithm to the class of problem instances to be solved; this is known to be the case for popular solvers for a broad range of AI problems, including AI planning, propositional satisfiability (SAT) and answer set programming (ASP). To avoid tedious and often highly sub-optimal manual tuning of such parameters by means of ad-hoc methods, general-purpose algorithm configuration procedures can be used to automatically find performance-optimizing parameter settings. While impressive performance gains are often achieved in this manner, additional, potentially costly parameter importance analysis is required to gain insights into what parameter changes are mos...