The hierarchical Dirichlet process (HDP) is a powerful nonparametric Bayesian approach to modeling groups of data which allows the mixture components in each group to be shared. However, in many cases the groups themselves are also in latent groups (categories) which may impact the modeling a lot. In order to utilize the unknown category information of grouped data, we present the hybrid nested/ hierarchical Dirichlet process (hNHDP), a prior that blends the desirable aspects of both the HDP and the nested Dirichlet Process (NDP). Specifically, we introduce a clustering structure for the groups. The prior distribution for each cluster is a realization of a Dirichlet process. Moreover, the set of cluster-specific distributions can share part...