In this paper, we address the problem of performing robust statistical inference for large-scale data sets whose volume and dimensionality maybe so high that distributed storage and processing is required. Here, the large-scale data are assumed to be contaminated by outliers and exhibit sparseness. We propose a distributed and robust two-stage statistical inference method. In the first stage, robust variable selection is done by exploiting t-Lasso to find the sparse basis in each node with distinct subset of data. The selected variables are communicated to a fusion center (FC) in which the variables for the complete data are chosen using a majority voting rule. In the second stage, confidence intervals and parameter estimates are found in e...