The paper deals with affine selections of affine (both convex and concave) multifunctions acting between finite-dimensional real normed spaces. It is proved that each affine multifunction with compact values possesses an exhaustive family of affine selections and, consequently, can be represented by its affine selections. Moreover, a convex multifunction with compact values possesses an exhaustive family of affine selections if and only if it is affine. Thus the existence of an exhaustive family of affine selections is the characteristic feature of affine multifunctions which distinguishes them from other convex multifunctions with compact values. Besides, a necessary and sufficient condition for a concave multifunction to be affine on a gi...