One of the most expressive formalisms to model concurrent systems is Markov automata. They serve as a semantics for many higher-level formalisms, such as generalised stochastic Petri nets and dynamic fault trees. Two of the most challenging problems for Markov automata to date are (i) the optimal time-bounded reachability probability and (ii) the optimal long-run average rewards. In this thesis, we aim at designing efficient sound techniques to analyse them. We approach the problem of time-bounded reachability from two different angles. First, we study the properties of the optimal solution and exploit this knowledge to construct an efficient algorithm that approximates the optimal values up to a guaranteed error bound. This algorithm is ...
Indiana University-Purdue University Indianapolis (IUPUI)Learning in Partially Observable Markov Dec...
In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal l...
In dieser Arbeit wird eine Beschreibung von Monte-Carlo-Verfahren zur Lösung komplexer Optimierungsa...
This thesis is a contribution to the study of quantitative models of automata, and more specifically...
A substantial amount of today's engineering problems revolve around systems that are concurrent and ...
Costs and rewards are important ingredients for many types of systems, modelling critical aspects li...
Cette thèse porte sur les problèmes de prise de décisions séquentielles sous incertitudes dans un sy...
Costs and rewards are important ingredients for cyberphysical systems, modelling critical aspects li...
This presentation introduces the Markov Reward Automaton (MRA), an extension of the Markov automaton...
Cette thèse porte sur les aspects calculatoires des problèmes de prise de décisions sous diverses so...
The dissertation focuses on stochastic optimization. The first chapter proposes a typology of stocha...
In the context of time-dependent problems of planning under uncertainty, most of the problem's compl...
The formal methods approach to develop reliable and efficient safety- or performance-critical system...
This thesis investigates the efficient analysis, especially the model checking, of bounded stochasti...
Reliability and dependability modeling can be employed during many stages of analysis of a computing...
Indiana University-Purdue University Indianapolis (IUPUI)Learning in Partially Observable Markov Dec...
In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal l...
In dieser Arbeit wird eine Beschreibung von Monte-Carlo-Verfahren zur Lösung komplexer Optimierungsa...
This thesis is a contribution to the study of quantitative models of automata, and more specifically...
A substantial amount of today's engineering problems revolve around systems that are concurrent and ...
Costs and rewards are important ingredients for many types of systems, modelling critical aspects li...
Cette thèse porte sur les problèmes de prise de décisions séquentielles sous incertitudes dans un sy...
Costs and rewards are important ingredients for cyberphysical systems, modelling critical aspects li...
This presentation introduces the Markov Reward Automaton (MRA), an extension of the Markov automaton...
Cette thèse porte sur les aspects calculatoires des problèmes de prise de décisions sous diverses so...
The dissertation focuses on stochastic optimization. The first chapter proposes a typology of stocha...
In the context of time-dependent problems of planning under uncertainty, most of the problem's compl...
The formal methods approach to develop reliable and efficient safety- or performance-critical system...
This thesis investigates the efficient analysis, especially the model checking, of bounded stochasti...
Reliability and dependability modeling can be employed during many stages of analysis of a computing...
Indiana University-Purdue University Indianapolis (IUPUI)Learning in Partially Observable Markov Dec...
In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal l...
In dieser Arbeit wird eine Beschreibung von Monte-Carlo-Verfahren zur Lösung komplexer Optimierungsa...