A key component in large scale distributed analytical processing is shuffling, the distribution of data to multiple nodes such that the computation can be done in parallel. In this paper we describe the design and implementation of a communication middleware to support data shuffling for executing multi-stage analytical processing operations in parallel. The middleware relies on RDMA (Remote Direct Memory Access) to provide basic operations to asynchronously exchange data among multiple machines. Experimental results show that the RDMA-based middleware developed can provide a 75% reduction of the costs of communication operations on parallel analytical processing tasks, when compared with a sockets middleware.This research has been partiall...