Special Session on Evolutionary Computer VisionIn continuous non-revisiting genetic algorithm (cNrGA), the solution set with different order leads to different density estimation and hence different mutation step size. As a result, the performance of cNrGA depends on the order of the evaluated solutions. In this paper, we propose to remove this dependence by a search space re-partitioning strategy. At each iteration, the strategy re-shuffles the solutions into random order. The re-ordered sequence is then used to construct a new density tree, which leads to a new space partition sets. Afterwards, instead of randomly picking a mutant within a partition, a new adaptive one-gene-flip mutation is applied. Motivated from the fact that the propos...