Motivated by problems arising from Arithmetic Geometry, in an earlier article one of the authors studied germs of holomorphic isometries between bounded domains with respect to the Bergman metric. In the case of a germ of holomorphic isometry, of the Poincaré disk Δ into a bounded symmetric domain Ω {double subset} ℂN in its Harish-Chandra realization and equipped with the Bergman metric, f extends to a proper holomorphic isometric embedding, and Graph(f) extends to an affine-algebraic variety V ⊂ ℂ × ℂN. Examples of F which are not totally geodesic have been constructed. They arise primarily from the p-th root map ρp: H → Hp and a non-standard holomorphic embedding G from the upper half-plane to the Siegel upper half-plane H3 of genus 3. I...