This paper presents the design and performance of a new parallel graphics renderer for 3D images. This renderer is based on an adaptive supersampling approach that works for time/space-efficient execution on two classes of parallel computers. Our rendering scheme takes subpixel supersamples only along polygon edges. This leads to a significant reduction in rendering time and in buffer memory requirements. Furthermore, we offer a balanced rasterization of all transformed polygons. Experimental results prove these advantages on both a shared-memory SGI multiprocessor server and a Unix cluster of Sun workstations. We reveal performance effects of the new rendering scheme on subpixel resolution, polygon number, scene complexity, and memory requ...