In traditional phase I and II clinical trial designs, toxicity and efficacy are often modelled as binary outcomes. Such methods ignore information on when the outcome event occurs, such as experiencing toxicity or achieving cure or remission. They also have difficulty accommodating a high accrual rate under which toxicity and efficacy outcomes cannot be observed in a timely manner, and thus delay treatment assignment. To address these issues, we propose a Bayesian adaptive phase I-II design that jointly models toxicity and efficacy as time-to-event outcomes. At each decision-making time, patients who have not experienced toxicity or efficacy are naturally censored. We apply the marginal cure rate model to account explicitly for those patien...