This paper studies the free vibration of circular toroidal sectors with circular crosssections based on the three-dimensional small-strain, linear elasticity theory. A set of orthogonal coordinates, composing the polar coordinate (r,θ) with the origin on the cross-sectional centerline of the sector and the circumferential coordinate φ with the origin at the curvature center of the centerline, is developed to describe the displacements, strains, and stresses in the sector. Each of the displacement components is taken as a product of four functions: a set of Chebyshev polynomials in φ and r coordinates, a set of trigonometric series in θ coordinate, and a boundary function in terms of φ. Frequency parameters and mode shapes have been obtained...