We study the problem of clustering data objects with location uncertainty. In our model, a data object is represented by an uncertainty region over which a probability density function (pdf) is defined. One method to cluster such uncertain objects is to apply the UK-means algorithm [1], an extension of the traditional K-means algorithm, which assigns each object to the cluster whose representative has the smallest expected distance from it. For arbitrary pdf, calculating the expected distance between an object and a cluster representative requires expensive integration of the pdf. We study two pruning methods: pre-computation (PC) and cluster shift (CS) that can significantly reduce the number of integrations computed. Both pruning methods ...