Gabidulin codes are the first general construction of linear codes that are maximum rank distant (MRD). They have found applications in linear network coding, for example, when the transmitter and receiver are oblivious to the inner workings and topology of the network (the so-called incoherent regime). The reason is that Gabidulin codes can be used to map information to linear subspaces, which in the absence of errors cannot be altered by linear operations, and in the presence of errors can be corrected if the subspace is perturbed by a small rank. Furthermore, in distributed coding and distributed systems, one is led to the design of error correcting codes whose generator matrix must satisfy a given support constraint. In this paper, we g...