By a proper colouring of a simple graph, we mean an assignment of colours to its vertices with adjacent vertices receiving different colours. Applications of this graph‐theoretic modelling are numerous, especially in the areas of scheduling and timetabling. We shall refer to a proper colouration that uses a smallest possible number of colours as a minimum (proper) colouration. This number for the graph is simply its chromatic number, the determination of which is well known to be a ‘hard’ problem. In this paper, from the computational point of view of actually constructing a colouration, we examine a simple coalescence/expansion procedure that bases on the branch and bound technique improved by efficient bounding conditions. They include va...