Two major obstacles hindering the wider acceptance of multi-methods are concerns over the lack of encapsulation and modularity and the absence of static typechecking in existing multi-method-based languages. This paper addresses both of these problems. We present a polynomial-time static typechecking algorithm that checks the conformance, completeness, and consistency of a group of method implementations with respect to declared message signatures. This algorithm improves on previous algorithms by handling separate type and inheritance hierarchies, abstract classes, and graph-based method lookup semantics. We also present a module system that enables independently-developed code to be fully encapsulated and statically typechecked on a per- ...