Echo state networks (ESNs) are a powerful form of reservoir computing that only require training of linear output weights while the internal reservoir is formed of fixed randomly connected neurons. With a correctly scaled connectivity matrix, the neurons’ activity exhibits the echo-state property and responds to the input dynamics with certain timescales. Tuning the timescales of the network can be necessary for treating certain tasks, and some environments require multiple timescales for an efficient representation. Here we explore the timescales in hierarchical ESNs, where the reservoir is partitioned into two smaller linked reservoirs with distinct properties. Over three different tasks (NARMA10, a reconstruction task in a volatile envir...