Despite their relative simplicity, Correlation Matrix Memories (CMMs) are an active area of research, as they are able to be integrated into more complex architectures such as the Associative Rule Chaining Architecture (ARCA) [1]. In this architecture, CMMs are used effectively in order to reduce the time complexity of a tree search from O(bd) to O(d)—where b is the branching factor and d is the depth of the tree. This paper introduces the Extended Neural Associative Memory Language (ENAMeL)—a domain specific language developed to ease development of applications using correlation matrix memories (CMMs). We discuss various considerations required while developing the language, and techniques used to reduce the memory requirements of CMM-bas...