Modern embedded platforms are known to be constrained by size, weight and power (SWaP) requirements. In such contexts, achieving the desired performance-per-watt target calls for increasing the number of processors rather than ramping up their voltage and frequency. Hence, generation after generation, modern heterogeneous System on Chips (SoC) present a higher number of cores within their CPU complexes as well as a wider variety of accelerators that leverages massively parallel compute architectures. Previous literature demonstrated that while increasing parallelism is theoretically optimal for improving on average performance, shared memory hierarchies (i.e. caches and system DRAM) act as a bottleneck by exposing the platform processors to...