Simple orbital maneuvers obeying Kepler’s Laws, when taken with respect to Newton’s framework, require considerable time and effort to interpret and understand. Instead of a purely mathematical approach relying on the governing relations, a graphical geometric conceptual representation provides a useful alternative to the physical realities of orbits. Conic sections utilized within the full scope of a modified cone (frustum) were employed to demonstrate and develop a geometric approach to elliptical orbit transformations. The geometric model in-question utilizes the rotation of a plane intersecting the orbital frustum at some angle β (and the change in this angle) in a novel approach to analyze and develop two-body elliptical orbital transf...