International audienceValue Prediction (VP) has recently been gaining interest in the research community, since prior work has established practical solutions for its implementation that provide meaningful performance gains. A constant challenge of contemporary context-based value predictors is to sufficiently capture value redundancy and exploit the predictable execution paths. To do so, modern context-based VP techniques tightly associate recurring values with instructions and contexts by building confidence upon them after a plethora of repetitions. However, when execution monotony exists in the form of intervals, the potential prediction coverage is limited, since prediction confidence is reset at the beginning of each new interval. In ...