This paper considers the use of optimal control theory in designing radio frequency excitation Pulses for magnetic spin systems satisfying Bloch dynamics. Such pulses are required in applications of nuclear magnetic resonance to initially transfer sample magnetization vectors to the transverse plane. Once transferred, signals released by nuclei as they respond to a static magnetic field normal to the transverse plane are then analyzed and interpreted. Continuous time deterministic optimal control theory is employed to determine time-dependent pulse amplitudes and frequencies that minimize the distance between final magnetization vectors and a chosen target vector. Pulses are designed to excite a range of resonant frequencies and to tolerate...