In this thesis, we consider the knot energy "integral Menger curvature" which is the triple integral over the inverse of the classic circumradius of three distinct points on the given knot to the power $pin [2,infty)$. We prove the existence of the first variation for a subset of a certain fractional Sobolev space if p>3 and for a subset of a certain Hölder space otherwise. We also discuss how fractional Sobolev and Hölder spaces can be generalised for 2pi-periodic, closed curves. Since this energy is not invariant under scaling, we additionally consider a rescaled version of the energy, where we take the energy to the power one over p and multiply by the length of the curve to a certain power. We prove that a circle is at least a stationar...