A finite-element approach based on the first-order FE2 homogenisation technique is formulated to analyse the alkali-silica reaction-induced damage in concrete structures, by linking the concrete degradation at the macro-scale to the reaction extent at the meso-scale. At the meso-scale level, concrete is considered as a heterogeneous material consisting of aggregates embedded in a mortar matrix. The mechanical effects of the Alkali-Silica Reaction (ASR) are modelled through the application of temperature-dependent eigenstrains in several localised spots inside the aggregates, and the mechanical degradation of concrete is modelled using continuous damage model, which is capable of reproducing the complex ASR crack networks. Then, the effectiv...