This paper presents a workflow for synthesizing near-optimal FPGA implementations of structured-mesh based stencil applications for explicit solvers. It leverages key characteristics of the application class and its computation-communication pattern and the architectural capabilities of the FPGA to accelerate solvers for high-performance computing applications. Key new features of the workflow are (1) the unification of standard state-of-the-art techniques with a number of high-gain optimizations such as batching and spatial blocking/tiling, motivated by increasing throughput for real-world workloads and (2) the development and use of a predictive analytical model to explore the design space, and obtain resource and performance estimates. T...