This thesis presents new results addressing three fundamental areas of cryptography: security notions, assumptions, and efficiency. The first part encompasses the security of symmetric primitives. We give a new security notion that provides the strongest security for symmetric primitives proven in the random oracle model (ROM). Key-correlated attacks (KCA) model the scenario where all inputs (keys, messages, and possibly nonces and headers) are correlated with the secret key. Under mild assumptions, we prove KCA security of blockciphers, and show that 3-rounds of Even-Mansour are necessary to achieve this. Then, we define a KCA-security notion for nonce-based authenticated encryption (AE), and provide a black-box transformation that turns a...