It is known since [24] that two one-dimensional probability measures in the convex order admit a martingale coupling with respect to which the integral of $\vert x-y\vert$ is smaller than twice their $\mathcal W_1$-distance (Wasserstein distance with index $1$). We showed in [24] that replacing $\vert x-y\vert$ and $\mathcal W_1$ respectively with $\vert x-y\vert^\rho$ and $\mathcal W_\rho^\rho$ does not lead to a finite multiplicative constant. We show here that a finite constant is recovered when replacing $\mathcal W_\rho^\rho$ with the product of $\mathcal W_\rho$ times the centred $\rho$-th moment of the second marginal to the power $\rho-1$. Then we study the generalisation of this new stability inequality to higher dimension
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
Wasserstein projections in the convex order were first considered in the framework of weak optimal t...
Wasserstein projections in the convex order were first considered in the framework of weak optimal t...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
This thesis is motivated by the study of the stability of the Martingale Optimal Transport problem, ...
This thesis is motivated by the study of the stability of the Martingale Optimal Transport problem, ...
This thesis is motivated by the study of the stability of the Martingale Optimal Transport problem, ...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
Wasserstein projections in the convex order were first considered in the framework of weak optimal t...
Wasserstein projections in the convex order were first considered in the framework of weak optimal t...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
International audienceIt is known since [24] that two one-dimensional probability measures in the co...
This thesis is motivated by the study of the stability of the Martingale Optimal Transport problem, ...
This thesis is motivated by the study of the stability of the Martingale Optimal Transport problem, ...
This thesis is motivated by the study of the stability of the Martingale Optimal Transport problem, ...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
International audienceMotivated by the approximation of Martingale Optimal Transport problems, westu...
Wasserstein projections in the convex order were first considered in the framework of weak optimal t...
Wasserstein projections in the convex order were first considered in the framework of weak optimal t...