A growing attention in the empirical literature has been paid on the incidence of climate shocks and change on migration decisions. Previous literature leads to different results and uses a multitude of traditional empirical approach. This paper proposes a tree-based Machine Learning (ML) approach to analyze the role of the weather shocks towards an individual’s intention to migrate in the six agriculture-dependent economy countries such as Burkina Faso, Ivory Coast, Mali, Mauritania, Niger, and Senegal. We perform several tree-based algorithms (e.g., XGB, Random Forest) using the train-validation test workflow to build robust and noise-resistant approaches. Then we determine the important features showing in which direction they are influe...