We prove three new lower bounds for graph connectivity in the 1-bit broadcast congested clique model, BCC(1). First, in the KT-0 version of BCC(1), in which nodes are aware of neighbors only through port numbers, we show an ?(log n) round lower bound for Connectivity even for constant-error randomized Monte Carlo algorithms. The deterministic version of this result can be obtained via the well-known "edge-crossing" argument, but, the randomized version of this result requires establishing new combinatorial results regarding the indistinguishability graph induced by inputs. In our second result, we show that the ?(log n) lower bound result extends to the KT-1 version of the BCC(1) model, in which nodes are aware of IDs of all neighbors, thou...