Infrared absorption spectra can provide analytically useful information on a large variety of compounds, ranging from small ions to large biological molecules. In fact, all analytes that possess a dipole moment that changes during vibration are infrared-active. The infrared (IR) spectrum can be subdivided into far-, mid- and near- regions. The focus of attention in this thesis is the mid-IR region, in which the fundamental vibrations of most organic compounds are located, thus providing scope for positive structural identification. However, while such near-ubiquitous signals can be very useful for monitoring simple molecules in simple systems, they can be increasingly disadvantageous as the number of analytes and/or the complexity of the sa...