We present a probabilistic model of phonotactics, the set of well-formed phoneme sequences in a language. Unlike most computational models of phonotactics (Hayes and Wilson, 2008; Goldsmith and Riggle, 2012), we take a fully generative approach, modeling a process where forms are built up out of subparts by phonologically-informed structure building operations. We learn an inventory of subparts by applying stochastic memoization (Johnson et al., 2007; Goodman et al., 2008) to a generative process for phonemes structured as an and-or graph, based on concepts of feature hierarchy from generative phonology (Clements, 1985; Dresher, 2009). Subparts are combined in a way that allows tier-based feature interactions. We evaluate our models’ abilit...