Abstract. Let X be a metric continuum and C(X) the hyperspace of subcontinua of X. A size map is a continuous function σ : , where σ is a size map and It is known that size levels are subcontinua of C(X), so we consider the space SL(X) of size levels as a subspace of C(C(X)). In this paper we study the space SL(X) and obtain an intrinsic characterization of size levels. As a consequence, we show that SL ([0, 1]) is not homeomorphic to the Hilbert space l 2 and we obtain topological characterizations of size levels of the hyperspaces of [0, 1] and the unit circle in the plane
Abstract. Let X be a continuum, C(X) the hyperspace of X, µ: C(X)→ [0, 1] a Whitney map, t ∈ [0, 1) ...
We construct a metric continuum X such that the hyperspace of sub-continua, C(X), of X is not a cont...
ARTICULO DE INVESTIGACIÓN EN EL TEMA DE FUNCIONES DE TAMAÑO FUERTELet X be a continuum. The n-fold h...
AbstractLet X be a metric continuum. Let C(X) be the hyperespace of subcontinua of X . Given two fin...
If (X, d) is a metric continuum, C(X) stands for the hyperspace of all nonempty subcontinua of X, en...
Abstract. A continuum X having the property of Kelley is constructed such that neither X × [0, 1], n...
Abstract. A continuum X having the property of Kelley is constructed such that neither X[0; 1], nor ...
AbstractGiven a non-degenerate Peano continuum X, a dimension function D:2∗X→[0,∞] defined on the fa...
AbstractLet C(X) be the hyperspace of subcontinua of a continuum X, and let μ : C(X)→[0,1] be a Whit...
AbstractFor a metric continuum X, we consider the hyperspaces C(X) and F2(X) of all subcontinua and ...
If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We pro...
AbstractA subspace G of the hyperspace 2X of a Peano continuum is called a growth hyperspace if G co...
AbstractSuppose X is a locally connected continuum without free arcs. It is known that the hyperspac...
We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a ...
ARTICULO DE INVESTIGACIÓN EN EL TEMA DE FUNCIONES DE TAMAÑO FUERTELet X be a continuum. The n-fold h...
Abstract. Let X be a continuum, C(X) the hyperspace of X, µ: C(X)→ [0, 1] a Whitney map, t ∈ [0, 1) ...
We construct a metric continuum X such that the hyperspace of sub-continua, C(X), of X is not a cont...
ARTICULO DE INVESTIGACIÓN EN EL TEMA DE FUNCIONES DE TAMAÑO FUERTELet X be a continuum. The n-fold h...
AbstractLet X be a metric continuum. Let C(X) be the hyperespace of subcontinua of X . Given two fin...
If (X, d) is a metric continuum, C(X) stands for the hyperspace of all nonempty subcontinua of X, en...
Abstract. A continuum X having the property of Kelley is constructed such that neither X × [0, 1], n...
Abstract. A continuum X having the property of Kelley is constructed such that neither X[0; 1], nor ...
AbstractGiven a non-degenerate Peano continuum X, a dimension function D:2∗X→[0,∞] defined on the fa...
AbstractLet C(X) be the hyperspace of subcontinua of a continuum X, and let μ : C(X)→[0,1] be a Whit...
AbstractFor a metric continuum X, we consider the hyperspaces C(X) and F2(X) of all subcontinua and ...
If X is a space then L(X) denotes the subspace of C(X) consisting of all Peano (sub)continua. We pro...
AbstractA subspace G of the hyperspace 2X of a Peano continuum is called a growth hyperspace if G co...
AbstractSuppose X is a locally connected continuum without free arcs. It is known that the hyperspac...
We determine the size levels for any function on the hyperspace of an arc as follows. Assume Z is a ...
ARTICULO DE INVESTIGACIÓN EN EL TEMA DE FUNCIONES DE TAMAÑO FUERTELet X be a continuum. The n-fold h...
Abstract. Let X be a continuum, C(X) the hyperspace of X, µ: C(X)→ [0, 1] a Whitney map, t ∈ [0, 1) ...
We construct a metric continuum X such that the hyperspace of sub-continua, C(X), of X is not a cont...
ARTICULO DE INVESTIGACIÓN EN EL TEMA DE FUNCIONES DE TAMAÑO FUERTELet X be a continuum. The n-fold h...