Let R be an associative ring with identity. A right R-module M is called generalized principally quasi-Baer if for any m ∈ M , r R (m R) is left sunital as an ideal of R and the ring R is said to be right (left) generalized principally quasi-Baer if R is a generalized principally quasi-Baer right (left) R-module. In this paper, we investigate properties of generalized principally quasi-Baer modules and right (left) generalized principally quasi-Baer rings. Keywords: generalized principally quasi-Baer modules, right (left) generalized principally quasi-Baer rings, Sea R un anillo asociativo con identidad. Se dice que un módulo derecho M de tipo R es de tipo generalizado principalmente de tipo cuasi-Baer si para cualquier m ∈ M , r R (m R) es...