This paper investigates an approach to the problem of detecting changes in multitemporal remote sensing images using Support Vector Machines (SVM) with the use of the polynomial kernel and RBF kernel (kernel based radial function). For the experiments two Landsat 5-TM images were used covering the same area, located in the State of Roraima, Brazil (61°37’W–61°49’W of longitude and 3°40’N–3°52’N of latitude). The methodological proposal is based on the difference of fraction images. The difference in soil and vegetation fractions in natural scene images tends to have a symmetrical distribution around the origin and this fact is used to model two normal multivariate distributions: change and non-change. The Expectation-Maximization (EM) algor...
International audienceWe present a textural kernel for "Support Vector Machines" classification appl...
Remote sensing technologies have been widely used in the contexts of land cover and land use. The im...
The classification accuracy of remotely sensed data and its sensitivity to classification algorithms...
This paper investigates an approach to the problem of detecting changes in multitemporal remote sens...
Esta tese investiga uma abordagem supervisionada para o problema da detecção de mudanças em imagens ...
Esta tese investiga uma abordagem supervisionada para o problema da detecção de mudanças em imagens ...
Esta tese investiga uma abordagem não supervisionada para o problema da detecção de mudanças em imag...
Esta tese investiga uma abordagem não supervisionada para o problema da detecção de mudanças em imag...
The production of land cover maps through satellite image classification is a frequent task in remot...
Random forest (RF) is a popular ensemble learning method that is widely used for the analysis of rem...
Nessa dissertação é investigada e testada uma metodologia para otimizar os parâmetros do kernel do c...
O manejo adequado dos recursos naturais em ambientes frÃgeis, como o da Caatinga, requer o conhecime...
In this research, we evaluate the pros and cons of using an RF-based kernel (RFK) in an SVM compared...
Context: Nowadays, the images of the Earth surface and the algorithms for their classification are w...
The classification of remote sensing images is a challenging task, as image contains bulk of informa...
International audienceWe present a textural kernel for "Support Vector Machines" classification appl...
Remote sensing technologies have been widely used in the contexts of land cover and land use. The im...
The classification accuracy of remotely sensed data and its sensitivity to classification algorithms...
This paper investigates an approach to the problem of detecting changes in multitemporal remote sens...
Esta tese investiga uma abordagem supervisionada para o problema da detecção de mudanças em imagens ...
Esta tese investiga uma abordagem supervisionada para o problema da detecção de mudanças em imagens ...
Esta tese investiga uma abordagem não supervisionada para o problema da detecção de mudanças em imag...
Esta tese investiga uma abordagem não supervisionada para o problema da detecção de mudanças em imag...
The production of land cover maps through satellite image classification is a frequent task in remot...
Random forest (RF) is a popular ensemble learning method that is widely used for the analysis of rem...
Nessa dissertação é investigada e testada uma metodologia para otimizar os parâmetros do kernel do c...
O manejo adequado dos recursos naturais em ambientes frÃgeis, como o da Caatinga, requer o conhecime...
In this research, we evaluate the pros and cons of using an RF-based kernel (RFK) in an SVM compared...
Context: Nowadays, the images of the Earth surface and the algorithms for their classification are w...
The classification of remote sensing images is a challenging task, as image contains bulk of informa...
International audienceWe present a textural kernel for "Support Vector Machines" classification appl...
Remote sensing technologies have been widely used in the contexts of land cover and land use. The im...
The classification accuracy of remotely sensed data and its sensitivity to classification algorithms...