We present algorithms for the following three-dimensional (3D) guillotine cutting problems: unbounded knapsack, cutting stock and strip packing. We consider the case where the items have fixed orientation and the case where orthogonal rotations around all axes are allowed. For the unbounded 3D knapsack problem, we extend the recurrence formula proposed by [1] for the rectangular knapsack problem and present a dynamic programming algorithm that uses reduced raster points. We also consider a variant of the unbounded knapsack problem in which the cuts must be staged. For the 3D cutting stock problem and its variants in which the bins have different sizes (and the cuts must be staged), we present column generation-based algorithms. Modified ver...
In this work we present two new variants of the two-dimensional guillotine cutting stock problem. W...
ED EPSInternational audienceIn this paper, we propose approximate and exact algorithms for the doubl...
We propose a framework to model general guillotine restrictions in two-dimensional cutting problems ...
We present algorithms for the following three-dimensional (3D) guillotine cutting problems: unbounde...
AbstractWe present algorithms for the following three-dimensional (3D) guillotine cutting problems: ...
We present algorithms for the following three-dimensional (3D) guillotine cutting problems: Un-bound...
We investigate several two-dimensional guillotine cutting stock problems and their variants in which...
We consider a two-dimensional cutting stock problem where stock of different sizes is available, and...
In this paper we tackle the unconstrained non-staged guillotine two-dimensional cutting stock proble...
The Guillotine Two-Dimensional Packing Problems are a class of optimization problems that require to...
The two-dimensional knapsack problem requires to pack a maximum profit subset of ‘‘small’’ rectangul...
In this paper we tackle the unconstrained non-staged guillotine two-dimensional cutting problem (U2D...
Imagine a wooden plate with a set of non-overlapping geometric objects painted on it. How many of th...
none5noWe consider a two-dimensional cutting stock problem where stock of different sizes is availab...
We consider a Two-Dimensional Cutting Stock Problem where stock of different sizes is avail-able, an...
In this work we present two new variants of the two-dimensional guillotine cutting stock problem. W...
ED EPSInternational audienceIn this paper, we propose approximate and exact algorithms for the doubl...
We propose a framework to model general guillotine restrictions in two-dimensional cutting problems ...
We present algorithms for the following three-dimensional (3D) guillotine cutting problems: unbounde...
AbstractWe present algorithms for the following three-dimensional (3D) guillotine cutting problems: ...
We present algorithms for the following three-dimensional (3D) guillotine cutting problems: Un-bound...
We investigate several two-dimensional guillotine cutting stock problems and their variants in which...
We consider a two-dimensional cutting stock problem where stock of different sizes is available, and...
In this paper we tackle the unconstrained non-staged guillotine two-dimensional cutting stock proble...
The Guillotine Two-Dimensional Packing Problems are a class of optimization problems that require to...
The two-dimensional knapsack problem requires to pack a maximum profit subset of ‘‘small’’ rectangul...
In this paper we tackle the unconstrained non-staged guillotine two-dimensional cutting problem (U2D...
Imagine a wooden plate with a set of non-overlapping geometric objects painted on it. How many of th...
none5noWe consider a two-dimensional cutting stock problem where stock of different sizes is availab...
We consider a Two-Dimensional Cutting Stock Problem where stock of different sizes is avail-able, an...
In this work we present two new variants of the two-dimensional guillotine cutting stock problem. W...
ED EPSInternational audienceIn this paper, we propose approximate and exact algorithms for the doubl...
We propose a framework to model general guillotine restrictions in two-dimensional cutting problems ...