In situ exploration of the planetary atmospheres requires the development of laboratory experiments to understand the molecular growth pathways initiated by photochemistry in the upper layers of the atmospheres. Major species and dominant reaction pathways are used to feed chemical network models that reproduce the chemical and physical processes of these complex environments. Energetic UV photons initiate very efficient chemistry by forming reactive species in the ionospheres of planets and satellites. Here we present a laboratory experiment based on a new photoreactor with an irradiation beam produced by high order harmonic generation of a near infra-red femtosecond laser. This type of EUV source is nowadays stable enough to enable long-l...